Interaction forces between colloids and protein-coated surfaces measured using an atomic force microscope.

نویسندگان

  • Li-Chong Xu
  • Bruce E Logan
چکیده

Bacterial surfaces contain proteins, polysaccharides, and other biopolymers that can affect their adhesion to another surface. To better understand the role of proteins in bacterial adhesion, the interactions between two different model colloids (glass beads and carboxylated latex microspheres) and four proteins covalently bonded to glass surfaces were examined using colloid probes and an atomic force microscope (AFM). Adhesion forces between an uncoated glass colloid probe and protein-coated surfaces, measured in retraction force curves, decreased in the order poly-D-lysine > lysozyme > protein A > BSA. This ordering was consistent with the relative calculated charges of the proteins at neutral pH and the zeta-potentials measured for glass beads and latex microspheres coated with these proteins. When the glass bead was coated with a protein (BSA), overall adhesion forces between the protein-coated colloid and the protein-coated surfaces were reduced, and the adhesion force for each protein decreased in the same order observed in experiments with the uncoated glass bead. When latex colloid probes were coated with BSA, adhesion forces were significantly larger than those measured with BSA-coated glass colloid probes under the same conditions, demonstrating that the nature of the underlying colloid can affect the measured interaction forces. In addition, the adhesion forces measured with the BSA-coated latex colloid increased in a different order (BSA < lysozyme < protein A < poly-D-lysine) than that observed using the BSA-coated glass colloid. It was also found that increasing the solution ionic strength consistently decreased adhesion forces. This result is contrary to the general observation that bacterial adhesion increases with ionic strength. It was speculated that conformational changes of the protein produced this decrease in adhesion with increased ionic strength. These results suggest the need to measure nanoscale adhesion forces in order to understand better molecular scale interactions between colloids and surfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction forces measured using AFM between colloids and surfaces coated with both dextran and protein.

Both proteins and polysaccharides are biopolymers present on a bacterial surface that can simultaneously affect bacterial adhesion. To better understand how the combined presence of proteins and polysaccharides might influence bacterial attachment, adhesion forces were examined using atomic force microscopy (AFM) between colloids (COOH- or protein-coated) and polymer-coated surfaces (BSA, lysoz...

متن کامل

Residence time, loading force, pH, and ionic strength affect adhesion forces between colloids and biopolymer-coated surfaces.

Exopolymers are thought to influence bacterial adhesion to surfaces, but the time-dependent nature of molecular-scale interactions of biopolymers with a surface are poorly understood. In this study, the adhesion forces between two proteins and a polysaccharide [Bovine serum albumin (BSA), lysozyme, or dextran] and colloids (uncoated or BSA-coated carboxylated latex microspheres) were analyzed u...

متن کامل

Adhesion forces between functionalized latex microspheres and protein-coated surfaces evaluated using colloid probe atomic force microscopy.

Proteins are important in bacterial adhesion, but interactions at molecular-scales between proteins and specific functional groups are not well understood. The adhesion forces between four proteins [bovine serum albumin (BSA), protein A, lysozyme, and poly-d-lysine] and COOH, NH2 and OH-functionalized (latex) colloids were examined using colloid probe atomic force microscopy (AFM) as the functi...

متن کامل

Measurement of the forces between gold surfaces in water by atomic force microscopy

The forces between a flat gold surface and a gold-coated silica sphere have been measured in water using an atomic force microscope. A long-range attractive interaction is observed which is ascribed to the van der Waals interaction between the two surfaces. The force data agree extremely well with recent, calculated values of the Hamaker function (including retardation) for gold/water/gold. The...

متن کامل

Adhesion forces between protein layers studied by means of atomic force microscopy.

Adhesion forces between different protein layers adsorbed on different substrates in aqueous media have been measured by means of an atomic force microscope using the colloid probe technique. The effects of the loading force, the salt concentration and pH of the medium, and the electrolyte type on the strength, the pull-off distance, and the separation energy of such adhesion forces have been a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 39 10  شماره 

صفحات  -

تاریخ انتشار 2005